Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Cases of convergent adaptation, especially between close relatives within a lineage, provide insights into constraints underlying the mechanisms of evolution. We examined this in the carnivorous plant family Lentibulariaceae, with its highly divergent trap designs but shared need for prey digestion, by generating a chromosome-level genome assembly for Pinguicula gigantea, the giant butterwort. Our work confirms a history of whole-genome duplication in the genus and provides strong phylogenomic evidence for a sister-group relationship between Lentibulariaceae and Acanthaceae. The genome also reveals that a key digestive adaptation, the expansion of cysteine protease genes active in digestion, was achieved through independent tandem duplications in the butterwort (Pinguicula) and its close relative, the bladderwort (Utricularia). Most of these parallel expansions arose in non-homologous regions of the two genomes, with a smaller subset located on homologous blocks. This study provides clear genomic evidence for convergent evolution and illustrates how similar selective pressures can repeatedly shape genomes in analogous ways.more » « lessFree, publicly-accessible full text available September 9, 2026
-
SUMMARY Extreme dryness is lethal for nearly all plants, excluding the so‐called resurrection plants, which evolved vegetative desiccation tolerance (VDT) by recruiting genes common in most plants. To better understand the evolution of VDT, we generated chromosome‐level assemblies and improved genome annotations of twoSelaginellaspecies with contrasting abilities to survive desiccation. We identified genomic features and critical mechanisms associated with VDT through sister‐group comparative genomics integrating multi‐omics data. Our findings indicate thatSelaginellaevolved VDT through the expansion of some stress protection‐related gene families and the contraction of senescence‐related genes. Comparative analyses revealed that desiccation‐tolerantSelaginellaspecies employ a combination of constitutive and inducible protection mechanisms to survive desiccation. We show that transcriptional priming of stress tolerance‐related genes and accumulation of flavonoids in unstressed plants are hallmarks of VDT inSelaginella. During water loss, the resurrectionSelaginellainduces phospholipids and glutathione metabolism, responses that are missing in the desiccation‐sensitive species. Additionally, gene regulatory network analyses indicate the suppression of growth processes as a major component of VDT. This study presents novel perspectives on how gene dosage impacts crucial protective mechanisms and the regulation of central processes to survive extreme dehydration.more » « less
-
Allopolyploidization, resulting in divergent genomes in the same cell, is believed to trigger a “genome shock”, leading to broad genetic and epigenetic changes. However, little is understood about chromatin and gene-expression dynamics as underlying driving forces during allopolyploidization. Here, we examined the genome-wide DNase I-hypersensitive site (DHS) and its variations in domesticated allotetraploid cotton (Gossypium hirsutumandGossypium barbadense, AADD) and its extant AA (Gossypium arboreum) and DD (Gossypium raimondii) progenitors. We observed distinct DHS distributions betweenG. arboreumandG. raimondii. In contrast, the DHSs of the two subgenomes ofG. hirsutumandG. barbadenseshowed a convergent distribution. This convergent distribution of DHS was also present in the wild allotetraploidsGossypium darwiniiandG. hirsutumvar.yucatanense, but absent from a resynthesized hybrid ofG. arboreumandG. raimondii, suggesting that it may be a common feature in polyploids, and not a consequence of domestication after polyploidization. We revealed that putativecis-regulatory elements (CREs) derived from polyploidization-related DHSs were dominated by several families, including Dof, ERF48, and BPC1. Strikingly, 56.6% of polyploidization-related DHSs were derived from transposable elements (TEs). Moreover, we observed positive correlations between DHS accessibility and the histone marks H3K4me3, H3K27me3, H3K36me3, H3K27ac, and H3K9ac, indicating that coordinated interplay among histone modifications, TEs, and CREs drives the DHS landscape dynamics under polyploidization. Collectively, these findings advance our understanding of the regulatory architecture in plants and underscore the complexity of regulome evolution during polyploidization.more » « less
-
The polar bear ( Ursus maritimus ) has become a symbol of the threat to biodiversity from climate change. Understanding polar bear evolutionary history may provide insights into apex carnivore responses and prospects during periods of extreme environmental perturbations. In recent years, genomic studies have examined bear speciation and population history, including evidence for ancient admixture between polar bears and brown bears ( Ursus arctos ). Here, we extend our earlier studies of a 130,000- to 115,000-y-old polar bear from the Svalbard Archipelago using a 10× coverage genome sequence and 10 new genomes of polar and brown bears from contemporary zones of overlap in northern Alaska. We demonstrate a dramatic decline in effective population size for this ancient polar bear’s lineage, followed by a modest increase just before its demise. A slightly higher genetic diversity in the ancient polar bear suggests a severe genetic erosion over a prolonged bottleneck in modern polar bears. Statistical fitting of data to alternative admixture graph scenarios favors at least one ancient introgression event from brown bears into the ancestor of polar bears, possibly dating back over 150,000 y. Gene flow was likely bidirectional, but allelic transfer from brown into polar bear is the strongest detected signal, which contrasts with other published work. These findings may have implications for our understanding of climate change impacts: Polar bears, a specialist Arctic lineage, may not only have undergone severe genetic bottlenecks but also been the recipient of generalist, boreal genetic variants from brown bears during critical phases of Northern Hemisphere glacial oscillations.more » « less
-
Desiccation tolerance is an ancient and complex trait that spans all major lineages of life on earth. Although important in the evolution of land plants, the mechanisms that underlay this complex trait are poorly understood, especially for vegetative desiccation tolerance (VDT). The lack of suitable closely related plant models that offer a direct contrast between desiccation tolerance and sensitivity has hampered progress. We have assembled high-quality genomes for two closely related grasses, the desiccation-tolerant Sporobolus stapfianus and the desiccation-sensitive Sporobolus pyramidalis . Both species are complex polyploids; S. stapfianus is primarily tetraploid, and S. pyramidalis is primarily hexaploid. S. pyramidalis undergoes a major transcriptome remodeling event during initial exposure to dehydration, while S. stapfianus has a muted early response, with peak remodeling during the transition between 1.5 and 1.0 grams of water (gH 2 O) g −1 dry weight (dw). Functionally, the dehydration transcriptome of S. stapfianus is unrelated to that for S. pyramidalis . A comparative analysis of the transcriptomes of the hydrated controls for each species indicated that S. stapfianus is transcriptionally primed for desiccation. Cross-species comparative analyses indicated that VDT likely evolved from reprogramming of desiccation tolerance mechanisms that evolved in seeds and that the tolerance mechanism of S. stapfianus represents a recent evolution for VDT within the Chloridoideae. Orthogroup analyses of the significantly differentially abundant transcripts reconfirmed our present understanding of the response to dehydration, including the lack of an induction of senescence in resurrection angiosperms. The data also suggest that failure to maintain protein structure during dehydration is likely critical in rendering a plant desiccation sensitive.more » « less
-
The avocado, Persea americana, is a fruit crop of immense importance to Mexican agriculture with an increasing demand worldwide. Avocado lies in the anciently-diverged magnoliid clade of angiosperms, which has a controversial phylogenetic position relative to eudicots and monocots. We sequenced the nuclear genomes of the Mexican avocado race, P. americana var. drymifolia, and the most commercially popular hybrid cultivar, Hass, and anchored the latter to chromosomes using a genetic map. Resequencing of Guatemalan and West Indian varieties revealed that ∼39% of the Hass genome represents Guatemalan source regions introgressed into a Mexican race background. Some introgressed blocks are extremely large, consistent with the recent origin of the cultivar. The avocado lineage experienced two lineage-specific polyploidy events during its evolutionary history. Although gene-tree/species-tree phylogenomic results are inconclusive, syntenic ortholog distances to other species place avocado as sister to the enormous monocot and eudicot lineages combined. Duplicate genes descending from polyploidy augmented the transcription factor diversity of avocado, while tandem duplicates enhanced the secondary metabolism of the species. Phenylpropanoid biosynthesis, known to be elicited by Colletotrichum (anthracnose) pathogen infection in avocado, is one enriched function among tandems. Furthermore, transcriptome data show that tandem duplicates are significantly up- and down-regulated in response to anthracnose infection, whereas polyploid duplicates are not, supporting the general view that collections of tandem duplicates contribute evolutionarily recent “tuning knobs” in the genome adaptive landscapes of given species.more » « less
An official website of the United States government

Full Text Available